

Interoperabilidade e Segurança de Identidades na Web 3.0: Gestão de Identidade Digital Descentralizada com Blockchain

Diogo Menezes Ferrazani Mattos menezes@midiacom.uff.br


LabGen/MídiaCom – PPGEET/TCE/IC Universidade Federal Fluminense (UFF) - Niterói, Brazil

Projeto Ilíada

 GT-PIDDF: Desenvolvimento de uma Plataforma de Identidade Digital Descentralizada com Autenticação Federada

Dianne Medeiros Vice-Coordenadora

Nicollas Rodrigues Pesquisador

- Coordenador
 - Diogo Menezes Ferrazani Mattos
- Vice-coordenadora
 - Dianne Scherly Varela de Medeiros

Guilherme Nasseh Desenvolvedor

Yago Rezende Desenvolvedor

Matheus Belato Assistente de Desenvolvimento

Carolina Rocha Assistente de Desenvolvimento

Gestão de Identidades Digitais Cenário Emergente

Web 3.0

- Aumento das transações digitais
- Necessidade crescente de segurança e privacidade

Sistemas Tradicional de Identidade

- Baseados em modelos centralizados
 - Único Provedor de Identidade (IDP)
 - Única credencial para acessar múltiplos serviços

Consequências Negativas

<u>Vulnerabilidade a Ataques</u>

Aumentando o risco de vazamento de dados

Perda de Controle

■ Os usuários perdem autonomia sobre suas informações no IDP

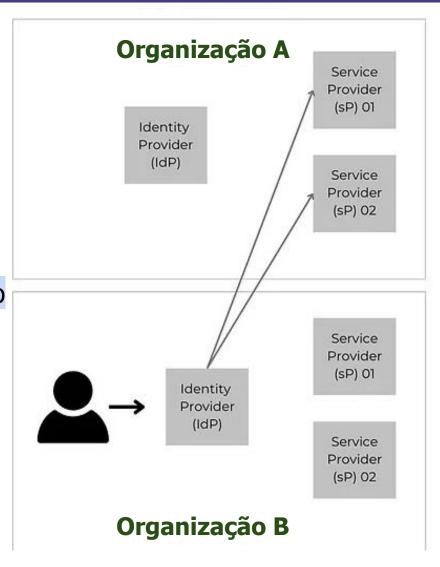
<u>Dependência do Provedor</u>

A segurança dos dados depende inteiramente do IDP

Identidade Federada

Centralizada → Federada → Descentralizada

Premissa Básica


 Vários provedores de identidade colaboram dentro de um círculo de confiança

Consequências

- ➤ Usuários podem autenticar-se em MÚLTIPLOS serviços
 - Utilizando uma única credencial provida por um IDP federado → aceita por diversos provedores de serviço

Desafios

- Compatibilidade com regulamentos
 - GDPR e LGPD
- Integração com sistemas legados e IDPs existentes

Plataforma PIDDF

Proposta

PIDDF → **P**lataforma de **I**dentidade **D**igital **D**istribuída com autenticação **F**ederada

Principais Características

Gestão Descentralizada de Identidade

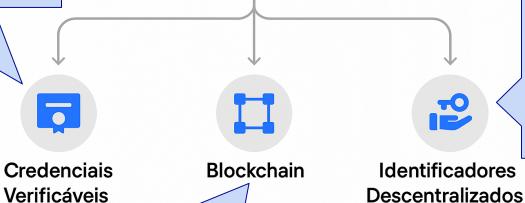
- Utiliza a arquitetura de referência do Trustbloc
 - Garantia do controle e segurança de dados pelos usuários

Autenticação Federada Avançada

- ➤ Integra Keycloak com suporte ao padrão OAuth 2.0
 - Compatibilidade com sistemas legados → Web 2.0

Infraestrutura Cloud-Native

> Adota Kubernetes e Docker para escalabilidade e desempenho robustos


Identidade Autossoberana - Conceitos Relacionados LabGen

Registros digitais emitidos por uma entidade confiável e verificáveis criptograficamente por qualquer parte interessada.

Identidade Autossoberana

Usuário controla, gerencia e compartilha seus dados de sem depender de autoridades intermediárias

Identificadores digitais únicos, persistentes e verificáveis, que não dependem de uma autoridade central

Registro distribuído, imutável e seguro que elimina a necessidade de intermediários

Estado-da-ArteDecentralized IDentifiers (DID)

❖ Identificadores Descentralizados

- ➤ Sequência de texto simples → identificadores únicos globais
 - Detentores s\(\tilde{a}\) os controladores

Propriedades

Descentralizado

- Independente de uma autoridade central para sua emissão

Persistente

Continua existindo sem necessidade de uma organização mantenedora

Resolvível

Permite recuperar metadados associados durante o processo de resolução

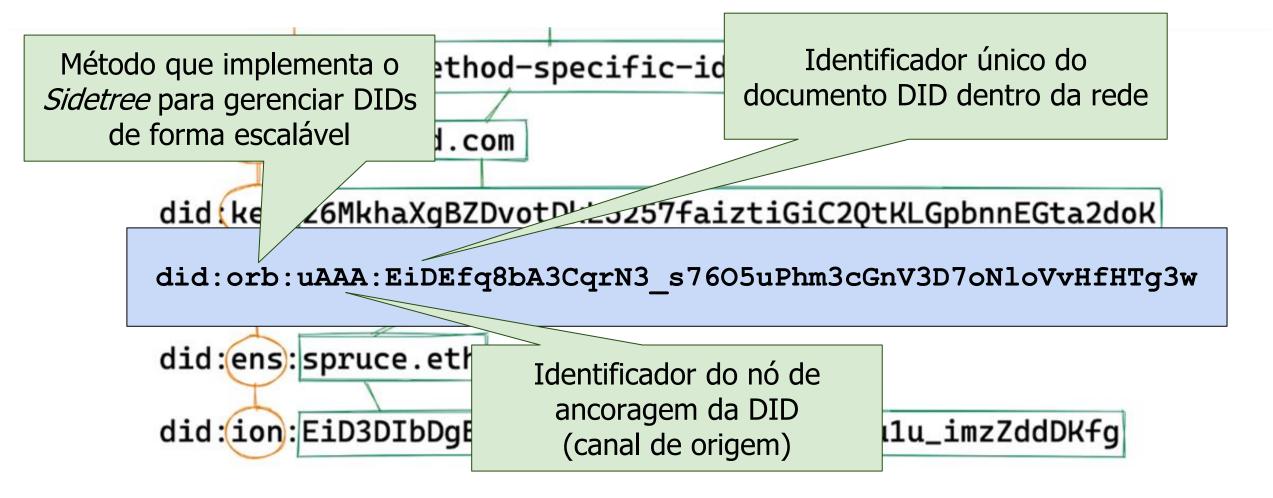
Criptograficamente Verificável

- Possibilita comprovar controle e posse por meio de criptografia

Decentralized IDentifiers (DID) - Métodos

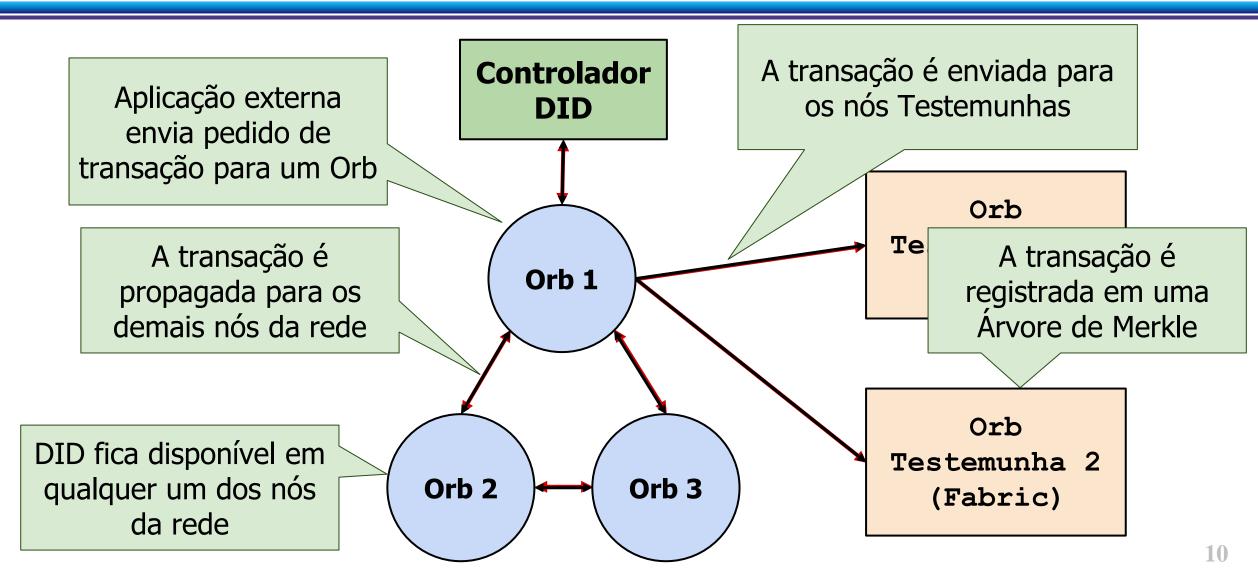
Métodos

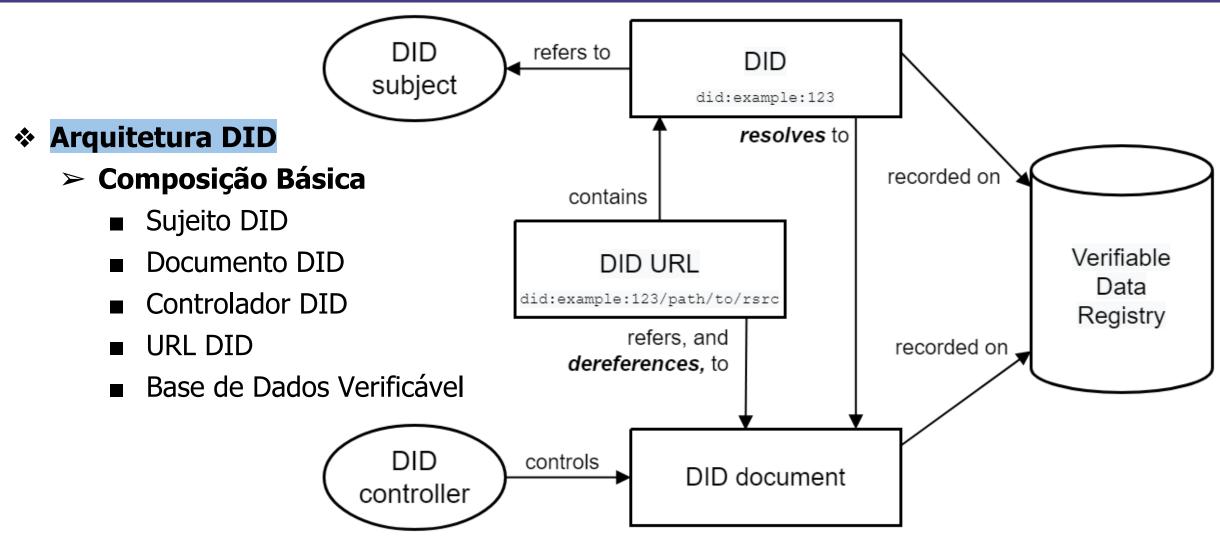
> "Especificações que definem como um DID é criado, gerenciado e vinculado a um par de chaves pública/privada"

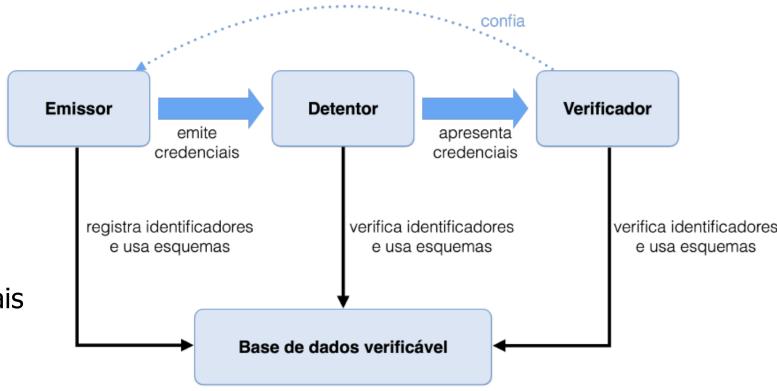


> Sintaxe Básica

- did: O prefixo que indica que é um identificador descentralizado
- <método>: O método DID que define o funcionamento técnico e a rede associada
 - Existem atualmente 184 métodos predefinidos
- <identificador específico>: Um identificador único dentro do método


Decentralized IDentifiers (DID) - Métodos

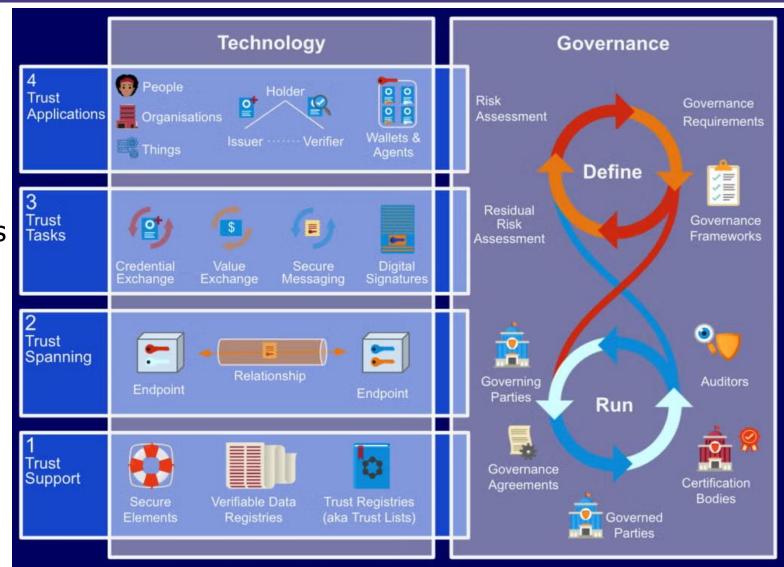

Tustbloc: Fluxo de Transação na Rede Orb



Verifiable Credentials (VCs)

Credenciais Verificáveis

- > Declarações digitais que podem ser verificadas quanto à sua autenticidade e integridade
 - São emitidas por uma autoridade confiável (o emissor) para um titular de credenciais
- > Formas de Representação
 - Documentos JSON-LD
 - JSON Web Token (JWT)
 - XML ou RDF
- ➤ GT-PIDDF
 - PIDDF-VCS
 - Servidor de Emissão e
 Verificação de credenciais
 - Base Verificável → ORB


Estado-da-ArteTrust-over-IP (ToIP)

❖ O que é?

- Estrutura em camadas projetada para estabelecer confiança digital
 - Entre indivíduos, organizações e sistemas

Camadas do Sistema de Gestão de IDD

❖ Camada de Identificação

- > Envolve a criação e verificação das VCs
 - Módulo desenvolvido → PIDDF-VCS

❖ Camada de Autenticação

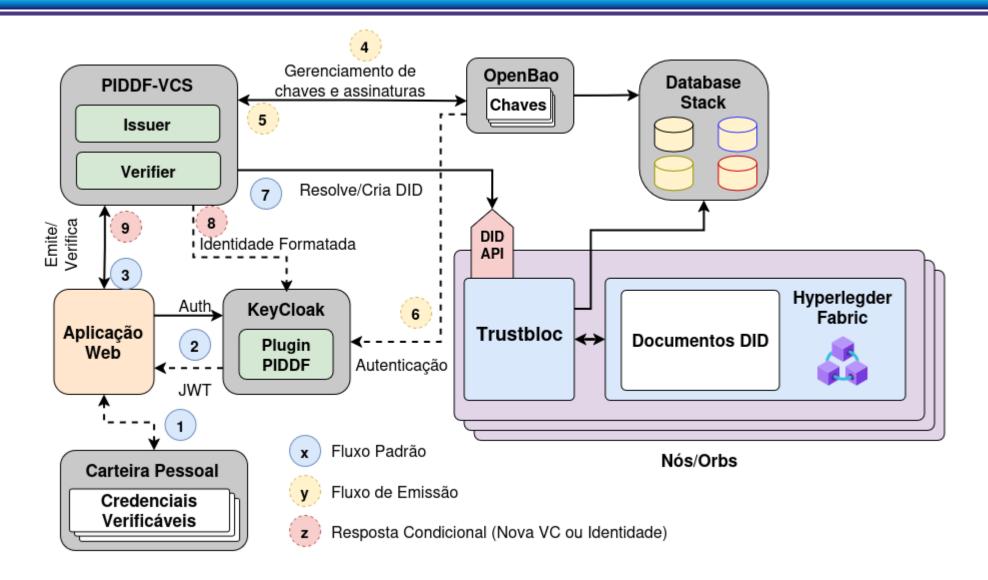
- > Responsável por verificar e validar a identidade do usuário
 - Software Utilizado → *Keycloak*

❖ Camada de Autorização

- > Define as regras e permissões para acesso a recursos ou serviços
 - Software Utilizado → Keycloak Authorization Services + Políticas de Acesso

❖ Camada de Confiança e Verificação

- > Atua na garantia da integridade das credenciais e verificações entre as partes envolvidas
 - Software Utilizado → *TrustBloc*


❖ Camada de Interoperabilidade

- > Focada na integração entre sistemas e plataformas heterogêneas
 - Software Utilizado → *W3C VC Libraries*

Arquitetura PIDDF

Versão Atual

Composição da Arquitetura

Frameworks Utilizados

- **OpenBao**
 - > Serviço de gerenciamento de segredos e proteção de dados.
 - > Principais Vantagens
 - Compatibilidade com provedores de identidade
 - Gerenciamento de credenciais verificáveis

❖ TrustBloc

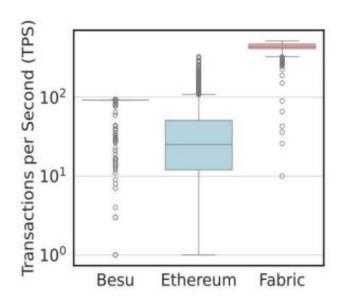
- > Framework projetado para facilitar a criação de redes de confiança baseadas em identidades descentralizadas
- > Principais Vantagens
 - Suporte a múltiplos métodos DID
 - Documentação atualizada e comunidade ativa
 - Suporte completo ao uso de credenciais verificáveis

Implantação do Hyperledger Fabric

Por que integrar com Trustbloc?

Outras Blockchains (Bitcoin, Ethereum)

- > Não Permissionada
 - Pares podem participar anonimamente
 - Todas as funcionalidades são <u>desempenhadas</u> internamente na infraestrutura das *blockchains*
 - Consenso e Armazenamento → realizado por todos os pares


Protocolos Pré-Definidos

- Consenso
 - Bitcoin → *Proof-of-Work (PoW)*
 - Ethereum 2.0 → Proof-of-Stake (PoS)

■ Transações

- Geralmente Públicas
- Baixa vazão de transações

Implantação do Hyperledger Fabric

Por que integrar com Trustbloc?

- > Características
 - Exclusivamente Permissionada
 - Criação de Canais → mecanismo para particionar a rede entre organizações

- Esquema Nativo de Identidade
 - Cada organização é identificada por certificados x.509
 - Emitidos por CAs e <u>capazes de conter atributos</u>
- Adoção de Nível de Confiança Prévio
 - Diminuindo o gargalo do consenso
- Paradigma Desagregador e Genérico → Foco Enterprise
 - Como? Separação do consenso da base de dados
 - Vantagens → Aumentar a eficiência e diminuir o tempo de resposta
 - Contras → Aumentando da complexidade da implementação
 - Definição de autenticação, validação, base de dados, consenso

Implantação do Hyperledger Fabric

Por que integrar com Trustbloc?

- ➤ Por que integrar com Trustbloc?
 - Registro do hash de cada "anchor" do ORB → Auditoria distribuída
 - Protocolo de Consenso
 - Método de Autenticação
 - Método de Definição de Canais

Transição de Paradigma

Recuperação Centralizada → Controle Soberano LabGen

Modelo Anterior

- ➤ Identidade recuperada de bases de dados centralizadas após a autenticação do usuário
 - Dependência de repositórios centralizados para o acesso à identidade

Modelo Atual

- Não haverá recuperação de identidade centralizada
- A identidade reside na posse do cliente
- O próprio usuário "entrega" sua identidade para validação

❖ Consequências no Processo de Autenticação

- > Um verificador compara: "Assinatura" do documento vs DID na blockchain
 - Que verificador? Keycloak
 - E o emissor? Cabe integrar um emissor de credenciais verificáveis
 - PIDDF VCS → módulo implementado
 - Onde ficam as credenciais? Em posse do usuário
 - Wallet do usuário / OpenBao (chaves)

Plataforma PIDDF

Benefícios

Segurança

> Garantia de imutabilidade e verificabilidade dos dados de identidade

Privacidade

- > Permite que os usuários detenham o controle total de suas informações
 - Compartilhamento seletivo

❖ Interoperabilidade

> A integração com sistemas legados por meio do protocolo OAuth 2.0

❖ Escalabilidade

- ➤ Arquitetura cloud-native → baseada em Kubernetes e Docker
 - Garante alto desempenho
 - Capacidade de lidar com grandes volumes de transações

Impacto no Sistema RNP Integração com a CAFe

❖ Integração com a CAFe

Aderência à infraestrutura da Comunidade Acadêmica Federada (CAFe) da RNP

❖ Integração com Keycloak

- > Permitirá autenticação federada e consequentemente...
 - Alinhamento aos padrões de segurança e privacidade da LGPD e as políticas de uso da CAFe

Impacto Potencial

Alavancar o uso de Identidades Digitais Descentralizadas no contexto da CAFe/RNP

Overview do Desenvolvimento

- Implantação do HyperLegder Fabric
- Implantação do VCS
 - Ory OathKeeper e Ory Hydra → Keycloak
- ➤ Integração Web 2.0 com Web 3.0
- ➤ Configuração do Keycloak
 - Integração com Identidades Descentralizadas
- > Modelagem e Validação da Representação das Identidades
- > Desenvolvimento da Lógica de Autenticação e Autorização

Etapa de Validação e Refinamento

- > Desenvolvimento e Teste da Aplicação Cliente
 - Para registro e autenticação
- > Avaliação de Métricas de Desempenho e Escalabilidade
 - Dentro do ambiente do testbed

Overview do Desenvolvimento Etapa de Validação

Metodologia de Testes

- > Baseado em Hyperledger Caliper v0.6.0
 - Suporte a redes Hyperledger Fabric (TrustBloc)

- > Cenário → Simulação de autenticação de usuários
 - Recuperação de DIDs e validação na rede TrustBloc

> Métricas de Avaliação

- Tempo de resposta
- Taxa de sucesso
- Consumo de recursos
- Escalabilidade da solução
- Mensurar impacto da SSI no desempenho de sistemas com padrões tradicionais de autenticação.

Publicações

• "SANTOS, Y. R.; BARBOSA, G. N. N.; REIS, L. H. A.; OLIVEIRA, NICOLLAS R. DE; MENDES, A. C. R.; MEDEIROS, D. S. V.; MATTOS, D. M. F. . Segurança de Dados Distribuída em Saúde Digital: Identidade Auto Soberana, Controle de Acesso e Registros de Logs baseados em Blockchain. In: Workshop Blockchain: Teoria, Tecnologia e Aplicações, 2024, Niterói. Anais do VII Workshop Blockchain: Teoria, Tecnologia e Aplicações (WBlockchain 2024). Porto Alegre: Sociedade Brasileira de Computação - SBC, 2024. p. 1-1.

OLIVEIRA, N. R.; SANTOS, Y. R.; BARBOSA, G. N. N.; REIS, L. H. A.; MENDES, A. C. R.; OLIVEIRA, M. T.; MEDEIROS, D. S. V.; MATTOS, D. M. F. Distributed Data Security in Digital Health: Self-Sovereign Identity, Access Control, and Blockchain-based Log Records. In: International Conference on Blockchain

Computing and Applications (BCCA), 2024, Dubai, UAE. (A ser apresentado em Nov/2024), 2024. p. 558.

DE R. DOS SANTOS, YAGO; DE OLIVEIRA, NICOLLAS R.; BARBOSA, GUILHERME N. N.; REIS, LUCIO HENRIK A.; MENDES, ANA CAROLINA R.; DE OLIVEIRA, MARCELA T.; DE MEDEIROS, DIANNE S. V.; MATTOS, DIOGO M. F.. Decentralized security in blockchain-based digital health systems: self-sovereign identity, access control, and auditing with smart contracts. Cluster Computing-The Journal of Networks Software Tools and Applications, v. 28, p. 940, 2025.

Interoperabilidade e Segurança de Identidades na Web 3.0: Gestão de Identidade Digital Descentralizada com Blockchain

Diogo Menezes Ferrazani Mattos menezes@midiacom.uff.br

LabGen/MídiaCom – PPGEET/TCE/IC Universidade Federal Fluminense (UFF) - Niterói, Brazil